پیش‌بینی ضریب نفوذ نسل پنجم شبکه ارتباطی (5G) در ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگر، پژوهشگاه ارتباطات و فناوری اطلاعات، ایران.

2 عضو هیئت‌علمی، پژوهشگاه ارتباطات و فناوری اطلاعات، ایران.

3 کارشناس، سازمان تنظیم مقررات و ارتباطات رادیویی، ایران.

چکیده

هدف از این مقاله بررسی روش‌های متنوع تحلیلی ضریب نفوذ فناوری نسل پنجم (5G) و در نهایت محاسبه ضریب نفوذ 5G در ایران بر اساس روش پرتو است. میزان ضریب نفوذ فناوری 5G برای پیش‌بینی زمان و نحوه گذر به شبکه 5G مهم است. در این مقاله فرض بر آن است که نفوذ اولیه 5G به میزان نفوذ موج قبلی فناوری بی‌سیم تلفن همراه که "نسل چهارم 4G" نامیده می‌شود، بستگی دارد. مشترکین تنها از نسل قبلی خود به یک نسل بعد مهاجرت خواهند کرد. محاسبه میزان ضریب نفوذ فناوری 5G بر اساس روش پرتو به میزان ضریب نفوذ 4G در همان سال بستگی دارد. ضریب نفوذ فناوری 5G در ایران روش پرتو محاسبه شده است. پیش‌بینی تعداد مشترکین منحصربه‌فرد 5G در سال‌های بعد از راه‌اندازی نیز با پیش‌بینی تعداد مشترکین منحصربه‌فرد فناوری 4G با استفاده از روش گومپرتز صورت گرفته است. بهترین زمان جهت سرمایه‌گذاری گسترده اپراتور در حوزه 5G سال 2025 و بهترین زمان برای جایگزینی فناوری 5G بجای فناوری 4G در اپراتورهای ارتباطی و عدم سرمایه‌گذاری در حوزه 4G نیز سال 2029 پیش‌بینی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

5G penetration rate forecast in Iran

نویسندگان [English]

  • Zahra Kooshki 1
  • Roghayeh Joda 2
  • Mohammad Dindoost 1
  • Ghazale Mohseni 3
1 Iran Telecommunication Research Center, Iran (ITRC).
2 Iran Telecommunication Research Center, Iran.
3 Expert of Communications Regulatory Authority (CRA), Iran.
چکیده [English]

In this paper, various analytical methods of 5G technology penetration rate is investigated and then 5G penetration rate is calculated for Iran based on Pareto method. The 5G technology penetration rate is important to predict the time and the way to migrate to the 5G network. It is assumed that the 5G technology penetration rate in the first year of the launch based on the Pareto method depends on the 4G penetration rate in the same year. The 5G technology penetration rate in Iran in the first year of the launch is predicted to be about 0.95% based on the Pareto method. The number of 5G unique subscribers in the years after the launch is also forecasted from the number of 4G technology unique subscribers which is predicated by the Gompertz method. The best time for the widespread investment of the operator in the 5G is 2025. It is also estimated that the best time to replace 5G technology with 4G is 2029.

کلیدواژه‌ها [English]

  • 5G
  • fifth generation communication network
  • penetration rate
  • Pareto method
  • Gompertz method

Bao, Y. et al. 2017, 'Quantitative techno-economic feasibility assessment', Mobile and wireless communications Enablers for the Twenty-twenty Information Society-II.

Charu & Gupta, R. 2015, 'A Comparative Study of Various Generations in Mobile Technology', International Journal of Engineering Trends and Technology (IJETT), 28(7), pp. 328–332.

Chu, W.-L. et al. 2009, 'Diffusion of mobile telephony: An empirical study in Taiwan', Telecommunications Policy, 33(9), pp. 506–520.

Geroski, P. A. 2000, 'Models of technology diffusion', Research Policy, 29(4–5), pp. 603–625.

Gompertz, B. 1825, 'On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies', Philosophical Transactions of the Royal Society of London, 115, pp. 513–583.

Gupta, R. & Jain, K. 2012, 'Diffusion of mobile telephony in India: An empirical study', Technological Forecasting and Social Change, 79(4), pp. 709–715.

'Impacts of 5G on productivity and economic growth' 2018, Australian Government, Department of Communications and the Arts, Bureau of Communications and Arts Research.

Kovács, I. Z. et al. 2011, 'Mobile Broadband Traffic Forecast Modeling for Network Evolution Studies', IEEE.

Krendzel, A. & Ginzboorg, P. 2014, 'Expected Penetration Rate of 5G Mobile Users by 2020: A Case Study', MOBILITY 2014: The Fourth International Conference on Mobile Services, Resources, and Users Expected, pp. 78–81.

Meade, N. & Islam, T. 2006, 'Modelling and forecasting the diffusion of innovation - A 25-year review', International Journal of Forecasting, 22(3), pp. 519–545.

Michalakelis, C., Varoutas, D. & Sphicopoulos, T. 2008, 'Diffusion models of mobile telephony in Greece', Telecommunications Policy, 32(3–4), pp. 234–245.

Rogers, E. M. 1995, DIFFUSION OF INNOVATIONS, THE FREE PRESS, New York.

Rouvinen, P. 2006, 'Diffusion of digital mobile telephony: Are developing countries different?', Telecommunications Policy, 30(1), pp. 46–63.

Sridhar, K. S. & Sridhar, V. 2007, 'Telecommunications INfrastructure and Economic Growth: Evidence from Developing Countries', Applied Econometrics and International Development, 7(2), pp. 37–61.

The Mobile Economy: Europe 2015, GSMA Intelligence.

The Mobile Economy: Middle East and North Africa 2016, GSMA Intelligence.

The Mobile Economy: Middle East and North Africa 2017, GSMA Intelligence.

The Mobile Economy 2017, GSMA Intelligence.

Vanston, L. K. & Hodges, R. L. 2004, 'Technology forecasting for telecommunications', Telecommunications Forecasting, telektronikk, pp. 32–43.

Waverman, L., Meschi, M. & Fuss, M. 2005, 'The impact of telecoms on economioc growth in developing Countries', London Business School and LECG.

WINSOR, C. P. 1932, 'The Gompertz Curve as a Growth Curve', Proceedings of the National Academy of Sciences, 18(1), pp. 1–8.

Wu, F.-S. & Chu, W.-L. 2010, 'Diffusion models of mobile telephony', Journal of Business Research, 63(5), pp. 497–501.

Yamakawa, P. et al. 2013, 'the diffusion of mobile telephones: An empirical analysis for Peru', Telecommunications Policy, 37(6–7), pp. 594–606.