شبیه سازی فرآیند اشاعه محصولات نوین با رویکرد پویایی های سیستم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان فارس، ایران

2 دانشگاه شیراز

چکیده

فرآیند اشاعة نوآوری، فرآیندی پیچیده و پویاست و تحت تأثیر متغیرهای متعددی مانند کیفیت، رقابت، قیمت، زمان ورود به بازار، تبلیغات و رضایت جامعه قرار دارد. الگوهای سنتی تبیینشده به منظور تحلیل و بررسی اشاعة نوآوری همچون الگوی باس، پویاییهای موجود در این فرآیند را نادیده میگیرند و با فرضیههای ساده اقدام به تحلیل فرآیند اشاعه میکنند. از این رو، پژوهش حاضر با هدف ایجاد یک مدل توسعهیافته و پویا از فرآیند اشاعة محصولات مبتنی بر نوآوری با استفاده از روش پویاییهای سیستم انجام شد. الگوی پیشنهادی این پژوهش بر اساس این رویکرد طراحی و با نرمافزار Vensim DSS شبیهسازی و اعتبار آن با استفاده از آزمونهای آماری و سیستمی مورد سنجش قرار گرفته است. همچنین این الگو بر یک محصول نوین شرکت مواد غذایی «ب آ» پیادهسازی گردیده و پس از اطمینان از باز تولید رفتار سیستم واقعی، سناریوهایی جهت بهبود روند پذیرش اجرا شده است. نتایج بیانگر آن هستند که عامل «خرید توصیهای» نسبت به متغیر « خرید از طریق تبلیغات رسانهای» تأثیر بیشتری بر تسریع فرآیند اشاعة نوآوری دارد. از اینرو، عواملی همچون رضایت مشتریان اولیه که بر فرآیند خرید توصیهای تأثیر گذارند، نقش مهمی در نرخ اشاعة نوآوری خواهند داشت.

کلیدواژه‌ها


عنوان مقاله [English]

A New Product Diffusion Model: A System Dynamics Approach

نویسندگان [English]

  • Mohammad Hashem Mousavi Haghighi 1
  • Mehdi Tajik 2
1 Faculty Member of Fars Research Center for Agriculture and Natural Resources,Shiraz,iran
2 Shiraz University
چکیده [English]

Innovation diffusion is a complex and dynamic process affected by various variables, such as quality, competition, the time of market entry, advertising and customer's satisfaction. Traditional innovation diffusion models, like Bass model, ignore the dynamics of diffusion process and simplify the assumptions based on which the diffusion process is analyzed. Therefore, this paper seeks to propose a developed and dynamic innovation diffusion model through the application of system dynamics methodology. This methodology has found advocates in various fields as an effective approach in studying dynamic and complex behaviors of economic and social systems. The proposed model is simulated by Vensim DSS software and its validity is verified by statistical and systemic tests. Moreover, the model is applied to a new product of B. A. Foodstuff Company. After ensuring the reproduction of real behavior, some scenarios are performed in order to improve the process. The results of the scenarios indicate that the "word-of-mouth" factor has a greater effect on accelerating the diffusion process than "advertising" factor. Also, factors such as the satisfaction of primary consumers, affecting the advertisement procedure through the "word-of-mouth", plays a major role in innovation diffusion.

کلیدواژه‌ها [English]

  • Innovation Diffusion
  • Bass Model
  • customer's satisfaction
  • system dynamics

Bass, F. (1969). A new product growth model for consumer durables. Management Science, 15, 215–217.

Bemmaor, A., & Lee, J. (2002). The Impact of Heterogeneity and Ill-Conditioning on Diffusion Model Parameter Estimates. Marketing Science, 21(2), 209–220.

Danaher, P., Hardie, B., & Putsis Jr., W. (2001). Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation. Journal of Marketing Research, 38(4), 501–514.

Fischer, D., Norvell, J., Sonka, S., & Nelson, M. (2000). Understanding technology adoption through system dynamics modeling: implications for agribusiness management. International Food and Agribusiness Management Review, 3, 269-281.

Fonseca, J. (2009). Customer satisfaction study via a latent segment model. Journal of retailing and consumer services, 16(5), 352-359.

Fornell, C., Johnson, M., Anderson, E., Cha, J., & Bryant, B. (1996). The American customer satisfaction index: nature, purpose and findings. Journal of marketing, 60(4), 7-18.

Golder, P. N., & Tellis, G. (1997). Will It Ever Fly? Modeling the Takeoff of Really New Consumer Durables. Marketing Science, 16(3), 256–270.

Jain, D., Mahajan, V., & Muller, E. (1991). Innovation Diffusion in the Presence of Supply Restrictions. Marketing Science, 10(1), 83–90.

Kumar, V., & Krishnan, T. (2002). Multinational Diffusion Models: An Alternative Framework. Marketing Science, 21(3), 318–330.

Lane , D., & Husemann, E. (2004). Movie marketing strategy formation with system dynamics: toward a multidisciplinary adoption; diffusion theory of cinema going. 22th International Conference of the System Dynamics Society. Oxford, England.

Mahjan, v., Muller, E., & Bass, F. .. (1990). New Product Diffusion Models in Marketing: A Review and Directions for Research. Journal of marketing, 54(1), 1-20.

Maier, F. (1995). Innovation diffusion models for decision support in strategic management. University of Manheim.

Marco, A., Cagliano, A., & Rafele, C. (2012). Forecasting the Diffusion of a Mobile Service for Freight Distribution. 30th International Conference of the System Dynamics Society. Gallen, Switzerland.

Matsumoto, H. (2000). System Dynamic Model for Life Cycle Assessmental of Residential Buildings. Management science, 47, 123-132.

Norton, J., & Bass, F. (1987). A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products. Management Science, 1069–1086.

Radas, S. (2005). Diffusion Models in Marketing:How to Incorporate the Effect of External Influence?. Economic Trends and Economic Policy, 15(105).

Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. Boston: Mac-Graw Hill.

Sutanto, J., Kankanhalli, A., Tay, J., Raman, K., & Tan, B. (2008). Change Management in Interorganizational Systems for the Public. Journal of Management Information Systems, 25, 133–175.

Thun, j. h., Größler, A., & Milling, P. (2000). The Diffusion of Goods Considering Network Externalities:A System Dynamics-Based Approach. The 18th International Confrence of The System Dynamic Society. Bergen.

Vilares, M., & Coelho, S. (2003). The employee-customer satisfaction chain in the ECSI model. European journal of marketing, 37(11), 1703-1722.

Wieck, L. (1996). Learning Organization: From Idea to Action. Human Resource Management, 6.

Wilkie, W. (1994). Consumer Behavior. New York: John Wiley & Sons.

Williams, T., Eden, C., Ackermann, F., & Tait, A. (1995). The effects of design changes and delays on project costs. Journal of the Operational Research Society, 46, 809–818.

Wunderlich, P., & Grössler, A. (2012). Using system dynamics to analyze innovation diffusion processes within intra-organizational networks. 30th International System Dynamics Conference, (p. 111). Gallen.

Yeon , S., Park, S., & Kim, S. (2006). A dynamic diffusion model for managing customer’s expectation and satisfaction. Technological Forecasting & Social Change, 73, 648–665.

Zhoa, W., & Rena, H. (2011). A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center. Resources, Conservation and Recycling, 933-944.